If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8h^2-4h=0
a = 8; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·8·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*8}=\frac{0}{16} =0 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*8}=\frac{8}{16} =1/2 $
| 3(m-4)-5m=-40 | | -2-3(2x+6)=70 | | 7(4-6p)=238 | | g(6)=−1−7(6) | | 6=-3x-5 | | 1.27x-9.3=-1.8 | | (3x)x+(4x)x=625 | | 9x-4-(-2x=1) | | 5x^2-(2x-3)^2=0 | | 7j=6j-1 | | 600a=2004 | | 12+3(x+2)=3x+2 | | 2.2x-2=0.2 | | 3/4g+6=-12 | | -x+5=-15 | | -2+-2=-2x+5 | | 18=14+y/4 | | -2(-3x+4)-5x=-10 | | 1.3-2p=9.7 | | 5m+11m-12=0 | | 3=4÷g-5 | | 4(-2x+5)=8-4x-16 | | -3c+5=35 | | -3(6k+8)=-114 | | 5r-12=13 | | √3x+7=8 | | 13x+24=13x+14 | | -13=3+4v | | -3y-6=17 | | 28=-15-2x | | 3x+10=3(x+2)+4 | | 5+6k=-49 |